Mechanism of insertion of diphtheria toxin: peptide entry and pore size determinations.
نویسندگان
چکیده
Diphtheria toxin ( DTx ) is an extremely potent inhibitor of protein synthesis. It is secreted as a linear polypeptide, which is cleaved to produce disulfide-linked A and B fragments. Fragment A, the inhibitor of protein synthesis, requires fragment B, the recognition subunit, for entry into intact cells. Fragment B has been proposed to form a transmembrane channel through which A gains access to the cytosol. If it were demonstrated that the B subunit had an exclusive association with membrane lipid acyl chains, this might indicate that A is secluded in a proteinaceous B channel. However, our results from intramembranous photolabeling studies show that both subunits of DTx enter the hydrocarbon domain of the bilayer. Toxin cleavage is not required for penetration. Decreasing pH leads to increased binding and hence indirectly to increased penetration. Parallel permeability studies indicate that cleaved DTx does indeed form pores (24 A in diameter) and they are larger than those previously reported (5 A) with native toxin. The data suggest that these are dimeric structures. Cleaved DTx is much more effective than intact DTx at pore formation. Thus, we conclude that, while pore formation is a feature of toxin-membrane interaction, the pore structure does not protect A from contact with lipid side chains and may in fact consist of both the A and B domains in a dimeric configuration, (AB)2.
منابع مشابه
Cellular Entry of Binary and Pore-Forming Bacterial Toxins
This Special Issue of Toxins, entitled “Cellular Entry of Binary and Pore-Forming Bacterial Toxins,” gives a sense of the recent advances in characterizing the functional and structural aspects of this broad scientific problem that goes beyond the classical field of toxinology and microbiology and spills into the general areas of biochemistry, biophysics, and molecular and cell biology. The con...
متن کاملDesign and Production of Recombinant TAT Protein Structure, Catalytic Domain of Diphtheria Toxin, and Evaluation of Its Effect on Cell Line
Background and Objectives: Cancer is one of the most deadly diseases in the present age and its conventional therapies have had low success. Toxin therapy of cancer is a new therapeutic approach, which has attracted the attention of pharmaceutical specialists. Diphtheria toxin consists of three functional, transducing, and binding domains, that the functional part inhibits protein synthesis and...
متن کاملMechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process
Research on diphtheria and anthrax toxins over the past three decades has culminated in a detailed understanding of their structure function relationships (e.g., catalytic (C), transmembrane (T), and receptor binding (R) domains), as well as the identification of their eukaryotic cell surface receptor, an understanding of the molecular events leading to the receptor-mediated internalization of ...
متن کاملpH-Triggered Conformational Switching along the Membrane Insertion Pathway of the Diphtheria Toxin T-Domain
The translocation (T)-domain plays a key role in the action of diphtheria toxin and is responsible for transferring the catalytic domain across the endosomal membrane into the cytosol in response to acidification. Deciphering the molecular mechanism of pH-dependent refolding and membrane insertion of the T-domain, which is considered to be a paradigm for cell entry of other bacterial toxins, re...
متن کاملEndosome fusion induced by diphtheria toxin translocation domain.
Endosomal cargo travels through a dynamic vesicle network en route to degradation by lysosomes or recycling through the Golgi apparatus back to the cell surface. Rab5 is a key determinant of the early endosomes by organizing effector proteins in specific subdomains and mediating early endosome fusion. We find that early endosome morphogenesis and maturation is disrupted by diphtheria toxin (DT)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 81 11 شماره
صفحات -
تاریخ انتشار 1984